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On the General Hermite Cardinal Interpolation 

By R. Kress 

Abstract. A sequence of interpolation series is given which generalizes Whittaker's 
cardinal function to the case of Hermite interpolation. By integrating the interpolation 
series, a sequence of new quadrature formulae for f f(x) dx is obtained. Derivative-free 
remainders are stated for these interpolation and quadrature formulae. 

Given a function f: R -> C and a real number h > 0, the series 

Th(f)(z): = ( 1)sf(mh) - 
7r m=- z- mh h 

h- E f(mh) sin 7r (z - mh), z E C, 
-7r m=-o z- mh h 

is called the cardinal series of the function f with respect to the interval h. If the series 
converges, its sum Th(f) is called the cardinalfunction or cardinal interpolation of the 
function f. Obviously, 

Th(f)(mh) = f(mh), m = 0, 41, 42, 

holds. In the case when f: B C is analytic in a strip B: = R X [-a, a] C C, a > 0, 
and satisfies certain conditions at infinity, a derivative-free remainder for this cardinal 
interpolation was independently found by Kress [2] and McNamee, Stenger and 
Whitney [6]. 

In the present paper, we generalize the cardinal interpolation and give a sequence 
of Hermite cardinal interpolations T, h(f), p = 0, 1, 2, , with 

Tih(f)(mh) = f(a)(mh), q = 0, 1, , p, m = 0, +1, +2, 

The usual cardinal interpolation is included as the particular case p = 0. 
In Section 1, we give the explicit form of Tp, h(f) and state a derivative-free re- 

mainder. Making use of this remainder, we describe a class of functions for which 

Tp,h(f) = f. 
In Section 2, we apply the general cardinal functions to derive a sequence I4, h(f), 

p = 0, 2, 4, . , of integration formulae for infinite integrals involving the deriva- 
tives f'"'(mh), q = 0, 2, ... , p, m = 0, ?1, ?2, . , which may be regarded as 
generalizations of the trapezoidal rule. The remainder, given by Goodwin [1], 
Martensen [4] and McNamee [5] for the trapezoidal rule, is extended to the quad- 
rature formulae 4, h(f). 
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The general cardinal interpolation developed in this paper is closely related to 
the general Hermite trigonometric interpolation of periodic functions [3]. 

1. Interpolation. Let p > 0 be an integer and let h > 0 be real. Define p + 1 
entire functions tq, q = 0, 1, ... , p, by 

(1.1) tq(z):= -!-- ) E ar(P)I 
Z 

z e C, 
q!\ (w/ h)z / =evenehe/ 

where the ar(p) are the coefficients of the Laurent expansion 

1 ar(P) 1<~ 
(1.2) si p+1 = i 1+P-r 5 0 < lZ1 < 7r. 

s inp z r r=O;r even Z 

To avoid indexing difficulties, we do not indicate the dependence of the t, on p and h. 
LEMMA 1.1. For every r = 0, 1, * , p, the functions tq, q = 0, 1, , p, satisfy 

(1.3) tr) (O) = 

(1.4) t4r)(mh) = 0, m = +1, 2, 2 

Proof. From (1.1) and (1.2), we obtain 

tq(Z) = z /q! + z +'uq(z), q = 0, 1, ..., p, 

with certain entire functions uq, and (1.3) immediately follows. The relation (1.4) 
trivially holds. 

Definition 1.1. Let p > 0 be an integer and let h > 0 be real. Given a function 
f: R -> C, f C CP(R), the pth cardinal series of f with respect to the interval h is defined 
by 

(1.5) Tp,h(f)(z):= >ii > q 
f(mh)tq(z - mh), z e C. 

m=-Oo q=O 

If the series converges, its sum Tp h(f) is called the pth cardinalfunction of f. 
Lemma 1.1 implies 
THEOREM 1.1. The pth cardinal function Tp h(f) is a Hermite interpolation of the 

function f with equidistant interpolation points 

(1.6) T2q(f)(mh) = f(q)(mh), q = 0, 1, ... ,p, m = 0, 1,* 

The first cardinal series is listed below. 

h _ _ __f _ _m _ _ . 

To,h(f)(Z) = - E (-1)m f(mh) ) Z 

/h\2 0 
3f f(mh) + 

f'(mh) 2 3 
Tl,h(f)() ~) 

=m? 1(z - mh) z - mhJ hZ 

3(hV f f(mh) 1 (2 f__mh_ 
T2,h(f)(Z) = (o 3 

M= -0z(z - mh \h/ z - mh 

+ f'(mh) f- + 
h 

3~ W 

In the case when the function f is analytic in a strip B: = R X [-a, a] C C, 
a > 0, we shall give a sufficient condition on the convergence of the pth cardinal 
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series of f and shall obtain a representation of the remainder 

(1.7) Rp,h(f):= f -Tp,h(f). 

LEMMA 1.2. Let the function f be analytic in the strip B: = R X [-a, a] C C, 
a > 0. Then 

n p 

xn(z)f(z)- >: : f(')(mh)tq(z - mh) 
m=-n q=O 

(1.8)_ 1i .4_ 
F ~z( n 

(1.8) -21ri h - n -z) sinp '(r/h) Z 

where Cn denotes the boundary of a rectangle Bn: = [-(n + I)h, (n + I)h] X 
[-a, a] C B and where Xn denotes the characteristic function of Bn with xn(Z) = 1, 
Z Ce Bn and xn(Z) = 0, z q1 Bn. 

Proof. The function F: Bn -* C, defined by 

(1.9) F(z): 
f 
(z) - E E f (mh)tq(z - mh)) z C Bn, 

sip(w1h)z m=-n q=O 

is analytic. Hence, by Cauchy's theorem, 

( 1.1 0) Xn(Z) F(z) = 
I 

f i zc Z - Cz. 

Using the identities 

d__ __ _ __ _-2w7ri 

J - m h)"' (z - mh)q+l (1 - Xn(z)), z 
( C 

q = 0, 1, , p, m = 0, -1,I , ?n, we substitute (1.9) into (1.10) and obtain 
(1.8). 

THEOREM 1.2. Let the function f be analytic and bounded in the strip B: = R X 
[-a, a] C C, a> 0, and let 

-tza wsx)+ia 
I f(z) 12 ds < Co f f(z)12 ds < . 

cx:) s a o+ia 

Then, for arbitrary p > 0 and h > 0, the pth cardinal series of f with respect to the 
interval h is locally uniformly convergent for all x e R and the remainder (1.7) is 
given by 

Rp,h(f)(x) = 2 i sin -h x - f( ) dx 
(1.12) ~~~2wri _ a (--x) sinp +'(r/h)~ 

-+a x) sinp(r/h) x e 
and bounded by 

1 (sin(w/lh)x P+V' sa 
f(j)o12idS\1/2 

(1.13) |\p 
h(f)(x) I 2(7ra)1/9 sinh(wr/h)a/ Jo-C-a ia 

( + ia )1/2} 

+ If( )I2 ds x e R. 
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Proof. Let f be bounded by M. Then we estimate the integrals 

(n+1/2)h+ia f(?) d_ 2Ma 

L(n+1/2)h-ia ( - x) sin"+1'(/h)P = (n + 1)h - Ix! 

Thus, by Lemma 1.2, 

n 

f(x) = lim n2[ f(')(mh)tq(x- mh) 
n-0 -m=-n 

( I *1.4) 2w7ri h -(n+ 1/2) h- ia - x) sinP''(r/h)r 

J+(n+1/2)h+ia f(?) dD 11 

-(n+1/2)h+ia - x) sin'+'(7r/h)rf , x R 

where convergence is locally uniform for all x e R. Upon noting that 

sin h ,I > sinh h a, = ia, h h 

and 

IJ~ia ds/lD _ x12 = r/a, 

Schwarz's inequality yields 
f~ia - f(~) d~ Vw (f 

A0 (~I2 ds) x R. 
o ? iia -x) sin'+'(r/h)? V N/a sinhp'(7r/h)a co ia / 

Hence, letting n -> o in (1.14) completes the proof. 
Remark. From the bound (1.13), we easily see that 

irn Tp,h(f)(X) = f(x), p = 0, 1, 
h--O 

and 

irn Tp,h(f)(X) = f(x), h > 0, sinh a > 1, 
P-M h 

where convergence is uniform for all x e R. In both cases h -O 0, p fixed and p co,0 
h fixed, the convergence is exponential. 

The following theorem describes a class of functions for which Tp, h(f) = f is true. 
THEOREM 1.3. Let f be an entire function, such that 

(1.15) If(z)I ? ce'IkJ, z = x + iye c, 

with real numbers c > 0 and 0 ? p < (p + 1)7r/h. Then the pth cardinal series for f 
with respect to h is locally uniformly convergent for all z e C, and the identity 

(1.16) Tp,h(f)(Z) = f(z), z e C, 

holds. 
Proof. By (1.15) we have 



ON THE GENERAL HERMITE CARDINAL INTERPOLATION 929 

f f(0 ce Pn 

sin+ 1(7r/h)? = sinhp+1(7r/h) In I 

exp [(p + 1) p] Inl]) = + in C 

as n1 -> co, and therefore 

p(n+1/2)hiia 
f(?) dt 

limJ = o 
J-- -o( 1)h x) sin' 1(7r/h)~ 

that is, by Lemma 1.2, 
n p 

f(z) = : f -(q)(mh)tq(Z mh) 
m=-n q=O 

1 . (n +1/2)h +i co f(0) 
(1 .17) +-s 2 isn -znlh Z dI 

2w1 h~~~ (+ 1/2) h- ic - z) sinp+1(wr/h)~ d 
-(n+1/2)h+icoi oo fd 0 

J-(n+1/2)h-ico (i -z) sin`1(7r/h)? )J 

z = x + iy E C 

for all n with (n + 1)h > ixi. Making use of 

sin ! = cosh7 >- 2 exp[ inh2]h , = ?(n + 1)h + in7, 

we conclude that 

(n+1/2)h+ico f(o) d< 1 

J(n++l/2) h-i (i -z) sinp`(wr/h)j = (p + 1)(7r/h) - p (n + 1)h- lx 

Letting n -> o in (1.17), the assertion of the theorem follows. 
Example. If we choose f(z) := eiPz, z E C, 0 _ p < (p + 1)r/h, we obtain 

the local uniform convergent expansion 
co 

(1.18) e = E E (ip)qeIpmh tq(z - mh), z E C. 
m=-o: q=O 

Setting p = r7r/h, r = 0, 1, * , p, we derive 

(1.19) exp[ir - z] = 2 (ir 7) (-1)rmtq(z- mh), z e C. 

2. Numerical Integration. We integrate the pth cardinal series of f termwise 
and obtain the series 

(2.1)~~~~ 4 hp,(f): = h E E ()aq "j(q) (mh) 
m=-?: q=O;q even 27r 

with the weights 

1(//2.)q+1 co 
(2.2) aq,p=y ) J_ tq(X) dx, q =O,525 . .5p. 
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If q is odd, the integral (2.2) vanishes, since in this case the function tq is odd. The 
series (2.1) may be regarded as generalizations of the trapezoidal rule approximation 
for the integral fr f(x) dx. 

In order to derive simple recurrence formulae for the weights aq,p, we state 
THEOREM 2.1. Let p be even. Then the weights aq, are uniquely determined by 

the identity 
v p/2 

(2.3) E a = pz" 11 (1 + (z/q)2),* Z E C. 
Q=O;q even q=1 

Proof. Integrating (1.19), we have 

]exp[ir h x dx = ir) ] t,(x) dx, r = 0, 2, , p, 

thus, we are led to the system of p/2 + 1 linear equations 

ao, = 1, 

(2.4) 
~2 (ir)(aq,p = 0, r = 1, ,p/2. 

q=O;a even 

Since the determinant DA of (2.4) is a Vandermonde determinant with 

p/2 

Dv = i(p/2) (v/2+ 1) H (q2 - r2) # 0 

Q>r=O 

the weights a,, are uniquely determined by the system (2.4). 
Define a polynomial P, of degree p by 

V 

P(z):= E a.,zQ z C C. 
Q=O;Q even 

Then (2.4) reads 

P2(O) = 1, 

P2(ri) = 0, r = p1, , ?p/2. 

Hence Pp(z) =- ,/2 (1 + (z/q)2), and (2.3) is established. 
From (2.3) it follows that 

P-2 P 

(1 + (2z/p)2) E a,,,,) - E .,pZaI p = 2, 4, *.. 
Q=O;a even Q=O;a even 

Comparing the coefficients, we find the desired recursion formulae 

aO p = 1, p = 0, 2, . 

(2.5) a.,. = a,,_ + (2/p)2 a-2,p-2, q = 2, 4, , p - 2, p = 2, 4, 

((p72)!) p 0, 2, 
... 

Using (2.5), we obtain 

* ,=1 is to be interpreted as unity when p = 0. 
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IOh(f) = h E f(mh), 

co h 3 0x 

I2 h(f) = h , f(mh) + 42 E f"(mh), 
m =-cx) 47 m =-c 

co 
+ 5 h3 co) h 5 co 

I4, h(f) = h E f(mh) 16 ft(mh) ? 6 f"" r(mh). 

In the case of odd p, we integrate (1.19) for r = 0, 2, , p - 1 and get the 
system of (p + 1)/2 linear equations 

ao,p= 1, 
(2.6) p-i 

I: (ir)`a,,,p =0, r = ,*-,(p- 1)/2. 
q=O;q even 

Comparing (2.6) with (2.4), we see that aq, = aq,p-1. q = 0, 2, * , p - 1. Thus, 
if p is odd, Ip, h(f) = Ip-1 h(f) is valid. Therefore, we may restrict ourselves to even p. 

In the case when the function f is analytic, we state a sufficient condition on the 
convergence of the series (2.1) and give a remainder in the following: 

THEOREM 2.2. Let the function f be analytic in the strip B: = R X [-a, a] C C, 
a > 0, let f(z) -O, z = x + iy as x ?co uniformly for all -a ? y ? a and let 

co- za - x)+iza 
(2.7) f jf(z)j ds < oo Jf(z)j ds < co. co) - a co) + t a 

Then fr. f(x) dx exists, and the series (2.1) is convergent for even p ? 0 and h > 0. 
The remainder 

(2.8) Ep,h(f):= f f(x) dx - Ip,h(f) 

is given by 

Ep, h(f ) 

p/2 1){fP+ cota exp[i(p + 1 - 2q)(r/h)r] 

(2.9) -(2 i) q= \ q J sJ +a sinp+1(7r/h)D 

- Ca s inp+? 1(7r/ h) / f(o) d} 

with the bound 

(2.10) IEP,hf) I <exp2 inhP(7r/h) Ja jf(z)j ds + jf(Z)j ds 

Proof. From the assumption (2.7), we see by Cauchy's theorem that fr. f(x) dx 
exists. 

Using the identity 

sin"l 7 x = exp[i(p ?_ )(7r/h)x] 
P 

I_ (P + I 
exp[-2iq(?i/h)x 

h (2 i)p 
+1 E 1- 

q Slfl (2i)~~~~~~~ q=Oq/ex[2(r/)] 
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we deduce from the residue theorem that 

1 7 sinP+1 (r/h)x = exp[i(p + 1)(7r/h)f] Z (v)2(P + h exp[-2iq(7r/h)I], 
- codx (2i)2' aqO \q/ 

v = t + ia, 
1 sin'+1(7r/h)x d exp[-i(p + l)(7r/h)f] (_ 1 4a( + ) exp[2iq(ir/h)?] 

- 
dx =2) q= \- q) /x[i(7/) 

v = t- ia. 

From this the estimates 
! f sin' (7r/h)x dx < exp[-(p + 1)(7r/h)a] v(P + 

1 N 
(2.11) ~r x --22) q )exp[2q(7r/h)a] 

< exp[-(7r/h)a], 4 = - + ia, 

follow. 
Integrating (1.8) over (-co, co) and interchanging the order of integration, 

we obtain 
(n+ 1/2) h n h a 

f(x) dx = h , 7 - aq pf(a(mh) 
(n+ 1/2) h m=-n q=O 2r 

1 1' 
(O 

co s in'+1(7r/hx 
+ 27ri n sin`+1(7r/h)? co dx d. 

With the aid of (2.11), we can estimate 

1 (n+1/2)h+ia 
f() 

(J sinp (7r/h)x dx d? 

r (n+1/2)h-ia sin +1(r/h)D _o x 
d 

? 2a max If(t4(n + -)h + ij)I, 

and 

j(n+1/2)h?ia ______ (f0 sin'+ (r/h)x 
7 

-(n+l/2)h?ia Sln+1 (7r/h) \ x 

< exp-(7r/h)a] (n+1/2)hia ds. 
sinh'+1(7r/h)a ds+12)?i 

Thus, by the assumptions on f, letting n -- completes the proof. 
Remark. From the bound (2.10), we have 

00 lim Ip,h(f) = f f(x) dx, p = O, 2, ... 
h-0 OD 

and 

lim Ip,h(f)= f f(x)dx, h > O, sinh-a > 1, where convergence isexonniaiotcss fxdndp c,hh 
where convergence is exponential in both cases h >* 0, fixed and p -) c, h fixed. 
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